On the prediction error for singular stationary processes

Mamikon S. Ginovyan

Boston University

June 27, 2023

Mamikon S. Ginovyan (BU) On the prediction error

- 2 Kolmogorov-Szegő Theorem
 - Spectral characterization of singular and regular processes
- **3** Formulas for the prediction error
- 4 Asymptotic behavior of the prediction error for singular processes
 - Background: Rosenblatt's and Davisson's results
 - Extensions of Rosenblatt's first theorem
 - An extension of Davisson's theorem
 - Extensions of Rosenblatt's second theorem
- 6 An Application. Estimates for the minimal Eigenvalue of truncated Toeplitz matrices

The Model

• Let $\{X(t), t \in \mathbb{Z}\}$ be a centered real-valued second-order stationary process with covariance function r(t) and spectral measure μ :

$$r(t) = \int_{-\pi}^{\pi} e^{-it\lambda} d\mu(\lambda), \quad t \in \mathbb{Z}.$$
 (2.1)

• Lebesgue decomposition of μ :

$$d\mu(\lambda) = d\mu_{a}(\lambda) + d\mu_{s}(\lambda) = f(\lambda)d\lambda + d\mu_{s}(\lambda), \qquad (2.2)$$

- $f(\lambda)$ is the spectral density of X(t).
- We assume that X(t) is non-degenerate: Var[X(0)] = r(0) > 0, and the spectral measure μ is non-trivial, i.e., μ has infinite support.

The prediction problem

- The "finite" linear prediction problem is as follows.
- Suppose we observe a finite realization of the process X(t):

$$\{X(t), -n \leq t \leq -1\}, n \in \mathbb{N} := \{1, 2, \ldots\}.$$

• We want to make an one-step ahead prediction, that is, to predict the unobserved random variable X(0), using the *linear predictor*

$$Y=\sum_{k=1}^n c_k X(-k).$$

The coefficients c_k (k = 1, 2, ..., n) are chosen so as to minimize the mean-squared error (MSE): E |X(0) - Y|².

• If $\widehat{c}_k := \widehat{c}_{k,n}$ are the minimizing constants, then the random variable

$$\widehat{X}_n(0) := \sum_{k=1}^n \widehat{c}_k X(-k)$$

is called the *best linear one-step ahead predictor* of X(0) based on the observed finite past: $X(-n), \ldots, X(-1)$.

• The minimum MSE:

$$\sigma_n^2(f) := E \left| X(0) - \widehat{X}_n(0) \right|^2 \ge 0$$

is called the *prediction error* of X(0) based on the past of length *n*.

Observe that

$$\sigma_{n+1}^2(f) \leq \sigma_n^2(f), \quad n \in \mathbb{N},$$

and hence the limit of $\sigma_n^2(f)$ as $n \to \infty$ exists. Denote by

$$\sigma^2(f) := \sigma^2_\infty(f)$$

the prediction error by the entire infinite past: $\{X(t), t \leq -1\}$.

- From the prediction point of view it is natural to distinguish:
- The class of processes for which we have *error-free prediction* by the entire infinite past, that is, $\sigma^2(f) = 0$. Such processes are called *deterministic* or *singular*,
- Processes for which $\sigma^2(f) > 0$ are called *nondeterministic* or *regular*.

• Define the relative prediction error

$$\delta_n(f) := \sigma_n^2(f) - \sigma^2(f),$$

and observe that

$$\delta_n(f) \ge 0$$
 and $\delta_n(f) \to 0$ as $n \to \infty$.

- But what about the speed of convergence of $\delta_n(f)$ to zero?
- This speed depends on the regularity nature (regular or singular) of the observed process X(t).
- In this talk we discuss this question.

- Specifically, the prediction problem we are interested in is to describe the rate of decrease of δ_n(f) to zero as n → ∞, depending on the regularity nature of the observed process X(t).
- It turns out that
- for regular processes the asymptotic behavior of $\delta_n(f) = \sigma_n^2(f) \sigma^2(f)$ is determined by
 - the dependence structure of the observed process X(t) and
 - the differential properties of its spectral density f, while
- for singular processes $(\delta_n(f) = \sigma_n^2(f))$ it is determined by
 - the geometric properties of the spectrum of X(t) and
 - singularities of its spectral density f.
- In this talk we focus on the less investigated case - singular processes.

- This talk is based on the following joint works with Nikolay Babayan (Russian-Armenian University) and Murad Taqqu (Boston University).
 - 1. N. M. Babayan, M. S. Ginovyan. On asymptotic behavior of the prediction error for a class of deterministic stationary sequences. *Acta Math. Hungar.*, *167* (2), *501–528* (2022)..
 - N. M. Babayan, M. S. Ginovyan. On the prediction error for singular stationary processes and transfinite diameters of related sets. *Zapiski POMI*, v. 510, 28–50 (2022).
 - 3. N. M. Babayan, M. S. Ginovyan, M. S. Taqqu. Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences.

J. Time Ser. Anal., 42: 622-652, 2021.

4. N. M. Babayan, M. S. Ginovyan. Asymptotic behavior of the prediction error for stationary sequences. *Probability Surveys.* 20: 664–721, 2023.

Kolmogorov-Szegő Theorem Spectral characterization of singular and regular processes

Kolmogorov-Szegő Theorem

The next result describes the asymptotic behavior of $\sigma_n^2(\mu)$ for a stationary process X(t) with spectral measure μ and gives a spectral characterization of deterministic and nondeterministic processes.

Let X(t) be a non-degenerate stationary process with spectral measure μ of the form $d\mu(\lambda) = f(\lambda)d\lambda + d\mu_s(\lambda)$.

(A) (Kolmogorov-Szegő Theorem).

$$\lim_{n \to \infty} \sigma_n^2(\mu) = \lim_{n \to \infty} \sigma_n^2(f) = \sigma^2(f) = 2\pi G(f), \quad (3.1)$$

where G(f) is the geometric mean of f, namely

$$G(f) := \begin{cases} \exp\left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln f(\lambda) \, d\lambda\right\} & \text{if } \ln f \in L^{1}(\Lambda) \\ 0, & \text{otherwise,} \end{cases}$$
(3.2)

It is remarkable that the limit in (3.1) is independent of μ_s.

Kolmogorov-Szegő Theorem

(B) (Kolmogorov-Szegő alternative). Either

$$\int_{-\pi}^{\pi} \ln f(\lambda) \, d\lambda = -\infty \Leftrightarrow \sigma^2(f) = 0 \Leftrightarrow X(t) \text{ is deterministic},$$

or else

$$\int_{-\pi}^{\pi} \ln f(\lambda) \, d\lambda > -\infty \Leftrightarrow \sigma^2(f) > 0 \Leftrightarrow X(t) \text{ is nondeterministic.}$$

(C) X(t) is regular (PND) \Leftrightarrow it is nondeterministic and $\mu_s \equiv 0$.

• The condition $\ln f \in L^1(\Lambda)$ is equivalent to the *Szegő condition*:

$$\int_{-\pi}^{\pi} \ln f(\lambda) \, d\lambda > -\infty \tag{3.3}$$

(this equivalence follows because $\ln f(\lambda) \leq f(\lambda)$).

Formulas for the prediction error

글▶ 글

We present formulas for the finite prediction error $\sigma_n^2(\mu)$.

• Using Kolmogorov's isometric isomorphism $V: X(t) \leftrightarrow e^{it}$, for $\sigma_n^2(\mu)$ we have

$$\sigma_n^2(\mu) := \min_{\{c_k\}} \mathbb{E} \left| \mathbf{X}(0) - \sum_{k=1}^n c_k \mathbf{X}(-k) \right|^2 = \min_{\{\mathbf{q}_n \in \mathcal{Q}_n\}} \|\mathbf{q}_n\|_{2,\mu}^2, \quad (4.1)$$

where $||\cdot||_{2,\mu}$ is the norm in $L^2(\mathbb{T},\mu)$, and

$$Q_n := \{q_n : q_n(z) = z^n + c_1 z^{n-1} + \cdots + c_n\}$$
 (4.2)

is the class of monic polynomials (i.e. with $c_0 = 1$) of degree n.

 Thus, the problem of finding σ²_n(μ) becomes to the problem of finding the solution of the minimum problem (4.1)-(4.2).

- The polynomial $p_n(z) := p_n(z, \mu)$ which solves the minimum problem (4.1)-(4.2) is called the *optimal polynomial* for μ in the class Q_n .
- The next result by Szegő solves the minimum problem (4.1)-(4.2).

PROPOSITION (3.1. SZEGŐ)

The unique solution of the minimum problem (4.1)-(4.2) is given by $p_n(z) = \kappa_n^{-1} \varphi_n(z)$, and the minimum in (4.1) is equal to $||p_n||_{2,\mu}^2 = \kappa_n^{-2}$, where $\varphi_n(z) = \kappa_n z^n + \cdots + l_n$ ($\kappa_n > 0$) is the nth orthogonal polynomial on the unit circle associated with the measure μ .

• Thus, for the prediction error $\sigma_n^2(\mu)$ we have the following formula:

$$\sigma_n^2(\mu) = \min_{\{q_n \in Q_n\}} \|q_n\|_{2,\mu}^2 = \|p_n(\mu)\|_{2,\mu}^2 = \|\kappa_n^{-1}\varphi_n(\mu)\|_{2,\mu}^2 = \kappa_n^{-2}.$$
 (4.3)

• In the theory of OPUC and prediction theory an important role play the following numbers, called the *parameters* or *Verblunsky* coefficients:

$$v_n := v_n(\mu) = -\overline{p_n(0)} = -\kappa_n^{-1}\varphi_n(0) = \overline{l}_n \kappa_n^{-1}, \quad |v_n| < 1, n \in \mathbb{N}.$$
(4.4)
There is a close relationship between the prediction error $\sigma_n^2(\mu)$ and
the parameter μ , given by formulas:

the parameters v_n , given by formulas:

$$\sigma_n^2(\mu) = \prod_{j=1}^n (1 - |v_j|^2) \quad \text{and} \quad \frac{\sigma_{n+1}^2(\mu)}{\sigma_n^2(\mu)} = 1 - |v_n|^2.$$
(4.5)

From the second formula in (4.5), it follows that the convergence of the sequences $|v_n|$ and $\sigma_{n+1}(\mu)/\sigma_n(\mu)$ are equivalent.

• For a general measure μ the asymptotic relation

$$\lim_{n \to \infty} v_n(\mu) = 0 \tag{4.6}$$

is of special interest.

- In this respect the following question arises naturally:
- what is the "minimal" sufficient condition on μ ensuring (4.6)?
- The next result of Rakhmanov (1983) shows that for (4.6), or equivalently, for

$$\lim_{n\to\infty}\sigma_{n+1}(\mu)/\sigma_n(\mu)=1$$

it is enough only to have a.e. positiveness on $\mathbb T$ of the s.d. f.

THEOREM (RAKHMANOV)

Let the measure μ have the form: $d\mu(\lambda) = f(\lambda)d\lambda + d\mu_s(\lambda)$, with f > 0 a.e. on \mathbb{T} . Then the asymptotic relation (4.6) is satisfied.

Mamikon S. Ginovyan (BU)

Asymptotic behavior of the prediction error for singular processes. Background: Rosenblatt's and Davisson's results.

- Only few works are devoted to the study of the speed of convergence of $\delta_n(f) = \sigma_n^2(f)$ to zero as $n \to \infty$, that is, the asymptotic behavior of the prediction error for deterministic processes.
- Using the technique of OPUC, M. Rosenblatt (1957) investigated the asymptotic behavior of the prediction error $\sigma_n^2(f)$ for deterministic processes in the following two cases:
 - (A) the spectral density $f(\lambda)$ is continuous and positive on a segment of $[-\pi,\pi]$ and zero elsewhere.
 - (B) the spectral density $f(\lambda)$ has a very high order of contact with zero at points $\lambda = 0, \pm \pi$, and is strictly positive otherwise.
- We will say that the spectral density f(λ) has a very high order of contact with zero at a point λ₀ if f(λ) is positive everywhere except for the point λ₀, due to which the Szegő condition (3.3) is violated.

Rosenblatt's first theorem about speed of convergence of $\sigma_n^2(f)$.

For the case (a) above, M. Rosenblatt proved that the prediction error σ_n²(f) decreases to zero exponentially as n → ∞. More precisely, M. Rosenblatt proved the following theorem.

THEOREM (ROSENBLATT'S FIRST THEOREM (THEOREM 1))

Let the s.d. f of a stationary process X(t) be positive and continuous on the segment $[\pi/2 - \alpha, \pi/2 + \alpha], 0 < \alpha < \pi$, and zero elsewhere. Then $\sigma_n^2(f)$ approaches zero exponentially as $n \to \infty$. More precisely,

$$\lim_{n \to \infty} \sqrt[n]{\sigma_n(f)} = \sin(\alpha/2).$$
(5.1)

Davisson's theorem.

 Using constructive methods, Davisson (1965) obtained an upper bound (rather than an asymptote) for the prediction error σ_n²(f) without imposing continuity requirement on the s.d. f(λ).
 Specifically, in Davisson (1965) was proved the following result:

THEOREM (DAVISSON (THEOREM 2))

Let the s.d. $f(\lambda)$, $\lambda \in [-\pi, \pi]$ of the process X(t) be identically zero on a closed interval of length $2\pi - 2\alpha$, $0 < \alpha < \pi$. Then for the prediction error $\sigma_n^2(f)$ the following inequality holds:

$$\sigma_n^2(f) \le 4c \left(\sin(\alpha/2)\right)^{2n-2},$$

where c = r(0) and $r(\cdot)$ is the covariance function of X(t).

イロト イヨト イヨト ・

Asymptotic for singular processes

Rosenblatt's second theorem about speed of convergence of $\sigma_n^2(f)$.

- Concerning the case (b), for a specific singular process X(t)Rosenblatt proved that $\sigma_n^2(f)$ decreases to zero *like a power*.
- More precisely, the deterministic process X(t) considered in Rosenblatt (1957) has the spectral density

$$f_{a}(\lambda) := \frac{e^{(2\lambda - \pi)\varphi(\lambda)}}{\cosh\left(\pi\varphi(\lambda)\right)}, \quad f_{a}(-\lambda) = f_{a}(\lambda), \quad 0 \le \lambda \le \pi, \qquad (5.2)$$

where $\varphi(\lambda) = (a/2) \cot \lambda$ and *a* is a positive parameter.

• For this case, Rosenblatt proved the following theorem.

THEOREM (ROSENBLATT'S SECOND THEOREM (THEOREM 3))

Suppose that the process X(t) has s.d. f_a given by (5.2). Then

$$\sigma_n^2(f_a) \sim \frac{\Gamma^2\left((a+1)/2\right)}{\pi 2^{2-a}} n^{-a} \quad \text{as} \quad n \to \infty.$$
 (5.3)

Mamikon S. Ginovyan (BU)

- Note that the function in (5.2) was first considered by Pollaczek (1929), and then by Szegő (1935), as a weight-function of a class of orthogonal polynomials possessing certain 'irregular' properties.
- It is worth to note that in Rosenblatt (1957) it was observed the singularity of function f_a(λ) only at point λ = 0, while a detailed analysis showed that for f_a we have the asymptotic relation:

$$f_a(\lambda) \sim \begin{cases} 2e^a \exp\left\{-a\pi/|\lambda|
ight\} & ext{as } \lambda o 0, \\ 2\exp\left\{-a\pi/(\pi-|\lambda|)
ight\} & ext{as } \lambda o \pm \pi. \end{cases}$$
 (5.4)

Thus, f_a has very high order of contact with zero at $\lambda = 0, \pm \pi$, due to which the process with s.d. f_a is singular and $\sigma_n^2(f_a)$ decreases to zero like n^{-a} .

Asymptotic for singular processes

• **Remark.** Under the conditions of Rosenblatt's first theorem (Theorem 5.1), we have

$$\lim_{n\to\infty}\sigma_{n+1}^2(f)/\sigma_n^2(f)=\sin^2(\alpha/2) \quad \text{and} \quad \lim_{n\to\infty}|v_n(f)|=\cos(\alpha/2).$$

• Similarly, under the conditions of Rosenblatt's second theorem (Theorem 5.3), we have

$$\lim_{n\to\infty}\sigma_{n+1}(f_a)/\sigma_n(f_a)=1 \quad \text{and} \quad \lim_{n\to\infty}v_n(f_a)=0,$$

where $v_n(f)$ and $v_n(f_a)$ are the Verblunsky coefficients corresponding to functions f and f_a , respectively.

• In the rest of this talk we present extensions of the above stated Rosenblatt's theorems (Theorems 1 and 3) and Davisson's theorem (Theorem 2) to broader classes of spectral densities.

Extensions of Rosenblatt's and Davisson's results.

Mamikon S. Ginovyan (BU) On the prediction error

EXTENSIONS OF ROSENBLATT'S FIRST THEOREM

Extensions of Rosenblatt's first theorem.

• In what follows, by E_f we denote the spectrum of the process X(t):

$$E_f := \{e^{i\lambda} : f(\lambda) > 0\}.$$
(5.5)

Thus, the closure \overline{E}_f of E_f is the support of the s.d. f.

- For a compact set *F* in the complex plane C by *τ*(*F*) we denote the *transfinite diameter* of *F*.
- **Transfinite diameter.** Let F be a compact set in the complex plane \mathbb{C} . Given any natural number $n \ge 2$, choose n points $z_1, \ldots, z_n \in F$ so as to maximize the product of the distances between them. Then the geometric mean of these distances, denoted by $\tau_n(F)$, is called the *n*th *transfinite diameter* of F. Fekete (1930) proved that the sequence $\tau_n(F)$ has a finite limit as $n \to \infty$. This limit, denoted by $\tau(F)$, is called the *transfinite diameter* of F.

If F is empty or consists of a finite number of points, then $\tau(F) = 0$.

• The next result extends Rosenblatt's first theorem (Theorem 1) to the case of several arcs, without having to stipulate continuity of s.d. *f*.

THEOREM (THEOREM 4)

Let the support \overline{E}_f of the spectral density f of the process X(t) consist of a finite number of closed arcs of the unit circle \mathbb{T} , and let f > 0 a.e. on \overline{E}_f . Then the sequence $\sqrt[n]{\sigma_n(f)}$ converges, and

$$\lim_{n \to \infty} \sqrt[n]{\sigma_n(f)} = \tau_f, \tag{5.6}$$

where $\tau_f := \tau(\overline{E}_f)$ is the transfinite diameter of \overline{E}_f .

EXTENSIONS OF ROSENBLATT'S FIRST THEOREM

- **Remark.** In Theorem 1, $\overline{E}_f = \{e^{i\lambda} : \lambda \in [\pi/2 \alpha, \pi/2 + \alpha]\}$, which represents a closed arc of length 2α , and we have $\tau(\overline{E}_f) = \sin(\alpha/2)$. Thus, the asymptotic relation (5.1) is a special case of (5.6).
- **Remark.** It follows from (5.6) that the question of exponential decay of $\sigma_n(f)$ is determined solely by the transfinite diameter of the support \overline{E}_f of the s.d. f, and does not depend on the values of f on \overline{E}_f .
- The following result provides a sufficient condition for the exponential decay of σ_n(f).

THEOREM (THEOREM 5)

If the spectral density f of the process X(t) vanishes on an arc, then the prediction error $\sigma_n(f)$ decreases to zero exponentially. More precisely, if f vanishes on an arc $\Gamma_{\delta} \subset \mathbb{T}$ of length 2δ ($0 < \delta < \pi$), then

$$\limsup_{n \to \infty} \sqrt[n]{\sigma_n(f)} \le \cos(\delta/2) < 1.$$
(5.7)

EXTENSIONS OF ROSENBLATT'S FIRST THEOREM

 The next result gives a necessary condition for the exponential decay of σ_n(f).

THEOREM (THEOREM 6)

A necessary condition for $\sigma_n(f)$ to tend to zero exponentially is that the s.d. f should vanish on a set of positive Lebesgue measure.

• **Remark.** This theorem shows that if the s.d. f a.e. positive, then it is impossible to obtain exponential decay of the prediction error $\sigma_n(f)$, no matter how high the orders of the zeros of f.

• From Theorem 4, we obtain the following result.

THEOREM (THEOREM 7)

Let the support \overline{E}_f and the s.d. f satisfy the conditions of Theorem 4. If the sequence of Verblunsky coefficients $v_n(f)$ converges in modulus, then

$$\lim_{n\to\infty} |v_n(f)| = \sqrt{1-\tau_f^2}.$$
(5.8)

• **Remark.** observe that the convergence of $|v_n(f)|$ (or equivalently $\sigma_{n+1}(f)/\sigma_n(f)$) implies the convergence of $\sqrt[n]{\sigma_n(f)}$, but not the converse. Hence, the condition of convergence (in modulus) of Verblunsky sequence $v_n(f)$ in Theorem 7 is essential.

r

30/54

• From Theorem 4 we obtain the following result, which is a partial converse of Rakhmanov's theorem:

THEOREM (THEOREM 8)

If the sequence $\sigma_n(f)$ satisfies the following condition:

$$\limsup_{n \to \infty} \sqrt[n]{\sigma_n(f)} = 1 \tag{5.9}$$

(in particular, if $\lim_{n\to\infty} v_n(f) = 0$), then $\overline{E}_f = \mathbb{T}$, i.e. the spectrum of the process is dense in \mathbb{T} .

Examples.

- The calculation of the transfinite diameter is a challenging problem, and in only very few cases has the transfinite diameter been exactly calculated.
- Below we give some examples, where we can explicitly calculate the the transfinite diameter by using some properties of the transfinite diameter.
- In examples below we will use the following notation: given $0 < \beta < 2\pi$ and $z_0 = e^{i\theta_0}$, $\theta_0 \in [-\pi, \pi)$, we denote by $\Gamma_{\beta}(\theta_0)$ an arc of the unit circle of length β which is symmetric with respect to the point $z_0 = e^{i\theta_0}$:

$$\Gamma_{\beta}(\theta_{0}) := \{ e^{i\theta} : \theta \in [\theta_{0} - \beta/2, \theta_{0} + \beta/2] \}.$$
(5.10)

PROPOSITION

The transfinite diameter possesses the following properties.

- (A) For a compact set $F \subset \mathbb{C}$ the transfinite diameter $\tau(F)$ is invariant with respect to parallel translation and rotation of F.
- (B) The transfinite diameter of an arc Γ_{α} of a circle of radius R with central angle α is equal to $R \sin(\alpha/4)$.
- (C) The transfinite diameter of an arbitrary line segment F is equal to one-fourth its length, that is, if F := [a, b], then $\tau(F) = \tau([a, b]) = (b a)/4$.
- (D) Let $F \subset \mathbb{C}$ be a compact set lying on the unit circle \mathbb{T} and symmetric with respect to real axis, and let F^{\times} be the projection of F onto the real axis. Then $\tau(F) = [2\tau(F^{\times})]^{1/2}$.

イロト イポト イヨト イヨト

Example 1. Let Γ_{2α} := Γ_{2α}(0). Then the projection Γ^x_{2α} of Γ_{2α} onto the real axis is the segment [cos α, 1] (see Figure 1a)), and by Proposition (C) for the transfinite diameter τ(Γ^x_{2α}) we have

$$\tau(\Gamma_{2\alpha}^{\mathsf{x}}) = (1 - \cos \alpha)/4 = (1/2)\sin^2(\alpha/2).$$

Hence, according to Proposition (D), we obtain

$$\tau(\Gamma_{2\alpha}) = [2\tau(\Gamma_{2\alpha}^{x})]^{1/2} = \sin(\alpha/2).$$
(5.11)

Taking into account that the transfinite diameter is invariant with respect to rotation (see Proposition (A)), from (5.11) for any $\theta_0 \in [-\pi, \pi)$ we have $\tau(\Gamma_{2\alpha}(\theta_0)) = \sin(\alpha/2)$.

Remark. Notice that the expression sin(α/2) in (5.11) was first obtained by Szegő (1935), where he calculated it as the Chebyshev constant of the arc Γ_{2α}(π/2), then it was deduced by Rosenblatt (1957), as the capacity of Γ_{2α}(π/2).

FIGURE: a) The sets $\Gamma_{2\alpha}$ and $\Gamma_{2\alpha}^{x}$. b) The set $\Gamma_{\alpha,\delta}$.

Mamikon S. Ginovyan (BU)

On the prediction error

June 27, 2023

• Example 2. Let $\alpha > 0$, $\delta \ge 0$ and $\alpha + \delta \le \pi$. Define (Figure 1b)):

$$\Gamma_{\alpha,\delta} := \Gamma_{\alpha,\delta}(\mathbf{0}) = \{ e^{i\theta} : \theta \in [-(\delta + \alpha), -\delta] \cup [\delta, \delta + \alpha] \}.$$
 (5.12)

• Then the projection $\Gamma^{x}_{\alpha,\delta}$ of $\Gamma_{\alpha,\delta}$ onto the real axis is the segment $\Gamma^{x}_{\alpha,\delta} = [\cos(\alpha + \delta), \cos \delta]$, and by Proposition (C) we have

$$\tau(\Gamma_{\alpha,\delta}^{\mathsf{x}}) = \frac{\cos \delta - \cos(\alpha + \delta)}{4} = \frac{\sin(\alpha/2)\sin(\alpha/2 + \delta)}{2}.$$

Hence, according to Proposition (D), we obtain

$$\tau(\Gamma_{\alpha,\delta}) = [2\tau(\Gamma_{\alpha,\delta}^{\mathsf{x}})]^{1/2} = (\sin(\alpha/2)\sin(\alpha/2+\delta))^{1/2}.$$
 (5.13)

• By Proposition (A), from (5.13) for any $heta_0 \in [-\pi,\pi)$ we have

$$\tau(\Gamma_{\alpha,\delta}(\theta_0)) = (\sin(\alpha/2)\sin(\alpha/2+\delta))^{1/2}.$$
 (5.14)

• Observe that for $\delta = 0$ we have $\Gamma_{\alpha,\delta}(\theta_0) = \Gamma_{2\alpha}(\theta_0)$, and formula (5.14) becomes (5.11).

Mamikon S. Ginovyan (BU) On the prediction error

 Now we apply Theorem 4 to obtain the asymptotic behavior of σ_n(f) in the cases where the spectrum of X(t) is as in Examples 1 and 2.

THEOREM (THEOREM 9)

Let \overline{E}_f be the support of the s.d. f of a stationary process X(t), and let f > 0 a.e. on \overline{E}_f . Then for $\sigma_n(f)$ the following assertions hold. (a) If $\overline{E}_f = \Gamma_{2\alpha}(\theta_0)$, where $\Gamma_{2\alpha}(\theta_0)$ is as in Example 1, then

$$\lim_{n\to\infty}\sqrt[n]{\sigma_n(f)}=\sin(\alpha/2).$$

(b) If $\overline{E}_f = \Gamma_{\alpha,\delta}(\theta_0)$, where $\Gamma_{\alpha,\delta}(\theta_0)$ is as in Example 2, then

$$\lim_{n\to\infty}\sqrt[n]{\sigma_n(f)} = \left(\sin(\alpha/2)\sin(\alpha/2+\delta)\right)^{1/2}.$$

AN EXTENSION OF DAVISSON'S THEOREM

An extension of Davisson's theorem

• Recall Davisson's theorem: If the s.d. f is identically zero on a closed interval of length $2\pi - 2\alpha$, $0 < \alpha < \pi$, then

$$\sigma_n^2(f) \le 4c \left(\sin(\alpha/2) \right)^{2n-2},$$
 (5.15)

where c = r(0) and $r(\cdot)$ is the covariance function of X(t).

- The theorem that follows extends Davisson's theorem to the case where the spectrum of X(t) consists of a union of two equal arcs.
- Let $\alpha > 0, \ \delta \ge 0$ and $\alpha + \delta \le \pi$, and let

$$\Gamma_{\alpha,\delta} := \Gamma_{\alpha,\delta}(\mathbf{0}) = \{ e^{i\theta} : \theta \in [-(\delta + \alpha), -\delta] \cup [\delta, \delta + \alpha] \},\$$

which is the union of two arcs of the unit circle of lengths α , the distance between which (over the circle) is equal to 2δ (see Example 2 and Figure 1b)).

38 / 54

THEOREM (THEOREM 10)

Let the s.d. $f(\lambda)$, $\lambda \in [-\pi, \pi]$ of the process X(t) be nonnegative on the set $\Gamma_{\alpha,\delta}$ ($\alpha > 0, \delta \ge 0, \alpha + \delta \le \pi$) and vanishes outside $\Gamma_{\alpha,\delta}$. Then

$$\sigma_n^2(f) \le 4c \left(\sin(\alpha/2) \right)^{n-1} \left(\sin(\alpha/2 + \delta) \right)^{n-1}, \tag{5.16}$$

where c = r(0) and $r(\cdot)$ is the covariance function of X(t).

Remark. For δ = 0 the set Γ_{α,δ} defined by (5.12) is an arc of length 2α, and, in this case, the inequality (5.16) becomes Davisson's inequality (5.15).

Extensions of Rosenblatt's second theorem

- Here we analyze the asymptotic behavior of $\sigma_n^2(f)$ in the case where the s.d. f has a very high order contact with zero at one or several points, so that the Szegő condition (3.3) is violated.
- The approach is based on the asymptotic behavior of the ratio:

$$\frac{\sigma_n^2(fg)}{\sigma_n^2(f)} \quad \text{as } n \to \infty,$$

where g is a non-negative function.

• To clarify the approach, we first assume that f is the s.d. of a nondeterministic process, in which case the geometric mean G(f) is positive. We can then write

$$\lim_{n \to \infty} \frac{\sigma_n^2(fg)}{\sigma_n^2(f)} = \frac{\sigma_\infty^2(fg)}{\sigma_\infty^2(f)} = \frac{2\pi G(fg)}{2\pi G(f)} = \frac{G(f)G(g)}{G(f)} = G(g).$$
(5.17)

• It turns out that under some additional assumptions imposed on functions f and g, the asymptotic relation (5.17) remains also valid in the case of deterministic processes, that is, when G(f) = 0.

Preliminaries.

 In what follows we consider the class of singular processes with s.d. f for which the sequence of {σ_n(f)} is weakly varying, that is,

$$\lim_{n\to\infty}\sigma_{n+1}(f)/\sigma_n(f)=1.$$

Denote by \mathcal{F} the class of the corresponding spectral densities:

$$\mathcal{F} := \left\{ f \in L^{1}(\Lambda) : \ f \ge 0, \ G(f) = 0, \ \lim_{n \to \infty} \frac{\sigma_{n+1}(f)}{\sigma_{n}(f)} = 1 \right\}.$$
 (5.18)

Remark. According to Rakhmanov's theorem, a sufficient condition for *f* ∈ *F* is that *f* > 0 almost everywhere on Λ and *G*(*f*) = 0. On the other hand, the class *F* does not contain spectral densities, which vanish on an entire segment of Λ (or on an arc of T).

EXTENSIONS OF ROSENBLATT'S SECOND THEOREM

• **Def.** Let \mathcal{F} be the class of spectral densities defined by (5.18). For $f \in \mathcal{F}$ denote by \mathcal{M}_f the class of nonnegative functions $g(\lambda)$ ($\lambda \in \Lambda$) satisfying the conditions: G(g) > 0, $fg \in L^1(\Lambda)$, and

$$\lim_{n \to \infty} \frac{\sigma_n^2(fg)}{\sigma_n^2(f)} = G(g), \tag{5.19}$$

that is,

$$\mathcal{M}_f := \left\{g \geq 0, \ \mathsf{G}(g) > 0, \ \mathit{fg} \in L^1(\Lambda), \ \lim_{n \to \infty} rac{\sigma_n^2(\mathit{fg})}{\sigma_n^2(\mathit{f})} = \mathsf{G}(g)
ight\}.$$

Def. We define the class B to be the set of all nonnegative, Riemann integrable on Λ = [-π, π] functions h(λ). Also, define the subclasses:

$$B_+ = \{h \in B : h(\lambda) \geqslant m\}, \ B^- = \{h \in B : h(\lambda) \leqslant M\}, \ B_+^- = B_+ \cap B^-, B_+ \cap B^-\}$$

where m and M are some positive constants.

EXTENSIONS OF ROSENBLATT'S SECOND THEOREM

• The next theorem describes the asymptotic behavior of the ratio $\sigma_n^2(fg)/\sigma_n^2(f)$ as $n \to \infty$, and states that if the s.d. $f \in \mathcal{F}$, and g is a nonnegative function, which can have *polynomial* type singularities, then $\{\sigma_n(fg)\}$ and $\{\sigma_n(f)\}$ have the same asymptotic behavior.

THEOREM (THEOREM 11)

Let $f \in \mathcal{F}$, and let g be a function of the form:

$$g(\lambda) = h(\lambda) \cdot \frac{t_1(\lambda)}{t_2(\lambda)}, \quad \lambda \in \Lambda,$$
 (5.20)

where $h \in B_{+}^{-}$, t_1 and t_2 are nonnegative trigonometric polynomials, such that $fg \in L^1(\Lambda)$. Then $g \in \mathcal{M}_f$ and $fg \in \mathcal{F}$, that is, fg is the s.d. of a singular process with weakly varying prediction error, and (5.19) holds.

EXTENSIONS OF ROSENBLATT'S SECOND THEOREM

• The next theorem extends Theorem 11 to a broader class of spectral densities, for which the function g can have arbitrary power type singularities.

THEOREM (THEOREM 12)

Let $f \in \mathcal{F}$, and let g be a function of the form:

$$g(\lambda) = h(\lambda) \cdot |t(\lambda)|^{\alpha}, \quad \alpha > 0, \ \lambda \in \Lambda,$$
(5.21)

where $h \in B_{+}^{-}$ and t is an arbitrary trigonometric polynomial. Then $g \in \mathcal{M}_{f}$ and $fg \in \mathcal{F}$, that is, fg is the s.d. of a deterministic process with weakly varying prediction error, and the relation (5.19) holds.

۲

 Taking into account that the sequence {n^{-α}, n ∈ N, α > 0} is weakly varying, as an immediate consequence of Theorems 11 and 12, we have the following result.

COROLLARY

Let the functions f and g satisfy the conditions of one of Theorems 11 and 12, and let $\sigma_n(f) \sim cn^{-\alpha}$ ($c > 0, \alpha > 0$) as $n \to \infty$. Then

$$\sigma_n(fg) \sim cG(g)n^{-\alpha} \quad \mathrm{as} \quad n \to \infty,$$

where G(g) is the geometric mean of g.

• The next result, which immediately follows from Theorem 3 and Corollary, extends Rosenblatt's second theorem.

THEOREM (THEOREM 13)

Let $f = f_{ag}$, where f_{a} is defined by (5.2), and let g be a function satisfying the conditions of one of Theorems 11 and 12. Then

$$\delta_n(f) = \sigma_n^2(f) \sim \frac{\Gamma^2\left(\frac{a+1}{2}\right) G(g)}{\pi 2^{2-a}} n^{-a} \quad \text{as} \quad n \to \infty,$$

where G(g) is the geometric mean of g.

- We thus have the same limiting behavior for σ_n²(f) as in the Rosenblatt's relation (5.3) up to an additional positive factor G(g).
- In view of Rakhmanov's theorem, Theorems 11-13 remain true if the condition f ∈ F is replaced by the slightly strong but more constructive condition: 'f > 0 a.e. on ∧ and G(f) = 0'.

47 / 54

Examples.

• Example 1. Let $g(\lambda) = \sin^{-2k}(\lambda - \lambda_0)$, where $k \in \mathbb{N}$ and λ_0 is an arbitrary point from $[-\pi, \pi]$. Then, for the geometric mean G(g) we have $G(g) = 4^k$, and in view of (5.19), we get

$$\lim_{n\to\infty}\frac{\sigma_n^2(fg)}{\sigma_n^2(f)}=G(g)=4^k.$$

- Thus, dividing the spectral density f by the non-negative trigonometric polynomial $\sin^{2k}(\lambda \lambda_0)$ of degree 2k ($k \in \mathbb{N}$), yields a 4^k -fold asymptotic increase of the prediction error.
- Notice that the value of the geometric mean G(g) does not depend on the choice of the point λ₀ ∈ [-π, π].

• Example 2. Let $g(\lambda) = |\sin(\lambda - \lambda_0)|^{\alpha}$, $\alpha \in \mathbb{R}$. We have

$$\lim_{n\to\infty}\frac{\sigma_n^2(fg)}{\sigma_n^2(f)}=G(g)=\frac{1}{2^{\alpha}}.$$

- Thus, multiplying the spectral density f(λ) by the function g(λ) = |sin(λ - λ₀)|^α yields a 2^α-fold asymptotic reduction of the prediction error.
- Example 3. Let $g(\lambda) = |\lambda \lambda_0|^{\alpha}$, $\lambda_0 \in [-\pi, \pi]$, $\alpha \in \mathbb{R}$. We have

$$\lim_{n\to\infty}\frac{\sigma_n^2(fg)}{\sigma_n^2(f)}=G(g)=\left(\frac{\pi}{e}\right)^{\alpha}\approx(1.156)^{\alpha}.$$

• Thus, multiplying the spectral density $f(\lambda)$ by the function $g(\lambda) = |\lambda - \lambda_0|^{\alpha}$ multiplies the prediction error asymptotically by $(\pi/e)^{\alpha} \approx (1.156)^{\alpha}$.

An Application. Estimates for the minimal eigenvalue of truncated Toeplitz matrices

- Here we analyze the relationship between the the minimal eigenvalue of a truncated Toeplitz matrix and the finite prediction error for a stationary process, by showing how it is possible to obtain information about the minimal eigenvalue from that of the prediction error.
- Let $f(\lambda)$ be the s.d. and let

$$T_n(f) := ||r_{k-j}||_{j,k=0,1,...,n}$$

be the truncated Toeplitz matrix generated by the Fourier coefficients (covariances) of f, and let

$$\lambda_{1,n}(f) \leq \lambda_{2,n}(f) \leq \cdots \lambda_{n+1,n}(f)$$

be the eigenvalues of $T_n(f)$.

• The next proposition gives a relationship between $\lambda_{1,n}(f)$ and $\sigma_n^2(f)$.

PROPOSITION

Let $\lambda_{1,n}(f)$ and $\sigma_n^2(f)$ be as above. Then $\lambda_{1,n}(f) \leq \sigma_n^2(f)$ for any $n \in \mathbb{N}$.

 Applying Theorem 9 and Proposition we obtain asymptotic estimates for λ_{1,n}(f).

Theorem

Let
$$f$$
, \overline{E}_f and $\lambda_{1,n}(f)$ be as above. Then
(a) If $\overline{E}_f = \Gamma_{2\alpha}(\theta_0)$, where $\Gamma_{2\alpha}(\theta_0)$ is as in Example 1, then
 $\lambda_{1,n}(f) = O\left(\sin^{2n}(\alpha/2)\right)$ as $n \to \infty$. (6.1)
(b) If $\overline{E}_f = \Gamma_{\alpha,\delta}(\theta_0)$, where $\Gamma_{\alpha,\delta}(\theta_0)$ is as in Example 2, then
 $\lambda_{1,n}(f) = O\left(\left(\sin(\alpha/2)\sin(\alpha/2 + \delta)\right)^n\right)$ as $n \to \infty$. (6.2)
(Mamikon S. Ginovyan (BU) On the prediction error June 27, 2023 52/5

• Using Davisson's theorem (Theorem 2), its extension (Theorem 10) and Proposition we obtain exact upper bounds for $\lambda_{1,n}(f)$ rather than the asymptotic estimates (6.1) and (6.2).

Theorem

Let f,
$$\overline{E}_f$$
 and $\lambda_{1,n}(f)$ be as above. Then

(a) If $\overline{E}_f = \Gamma_{2\alpha}(\theta_0)$, where $\Gamma_{2\alpha}(\theta_0)$ is as in Example 1, then

$$\lambda_{1,n}(f) \le 4c \left(\sin(\alpha/2)\right)^{2n-2}.$$
 (6.3)

(b) If $\overline{E}_f = \Gamma_{\alpha,\delta}(\theta_0)$, where $\Gamma_{\alpha,\delta}(\theta_0)$ is as in Example 2, then

$$\lambda_{1,n}(f) \le 4c \left(\sin(\alpha/2)\right)^{n-1} \left(\sin(\alpha/2+\delta)\right)^{n-1},\tag{6.4}$$

where the constant c is as in Davisson's theorem: $c = r(0) = \int_{-\pi}^{\pi} f(\lambda) d\lambda$.

(日)

Thank you

Mamikon S. Ginovyan (BU) On the prediction error

∃ ► < ∃ ►</p> 54 / 54June 27, 2023

æ

References

🔋 N. M. Babayan, M. S. Ginovyan.

On hyperbolic decay of prediction error variance for deterministic stationary sequences.

J. Cont. Math. Anal., 55:76-95, 2020.

🔋 N. M. Babayan, M. S. Ginovyan.

On asymptotic behavior of the prediction error for a class of deterministic stationary sequences.

Acta Math. Hungar., 167 (2), 501–528, 2022.

🔋 N. M. Babayan, M. S. Ginovyan.

On the prediction error for singular stationary processes and transfinite diameters of related sets.

Zapiski POMI, v. 510, 28-50, 2022.

- N. M. Babayan, M. S. Ginovyan, M. S. Taqqu. Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences.
 - J. Time Ser. Anal., 42:622-652, 2021.

N. M. Babayan, M. S. Ginovyan. Asymptotic behavior of the prediction error for stationary sequences. *Probability Surveys.* 20: 664–721, 2023.

N. M. Babayan, M. S. Ginovyan, M. S. Taqqu. Extensions of Rosenblatt's results on the asymptotic behavior of the prediction error for deterministic stationary sequences. *J. Time Ser. Anal.*, 42:622–652, 2021.

Davisson, L. D.

Prediction of time series from finite past.

J. Soc. Indust. Appl. Math., 13: 819-826, 1965.

Rosenblatt, M.

Some Purely Deterministic Processes.

J. of Math. and Mech., 6:801-810, 1957.