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The prediction problem

The Model

Let {X (t), t ∈ Z} be a centered real-valued second-order stationary
process with covariance function r(t) and spectral measure µ:

r(t) =

∫ π

−π
e−itλdµ(λ), t ∈ Z. (2.1)

Lebesgue decomposition of µ:

dµ(λ) = dµa(λ) + dµs(λ) = f (λ)dλ+ dµs(λ), (2.2)

f (λ) is the spectral density of X (t).

We assume that X (t) is non-degenerate: Var[X (0)] = r(0) > 0, and
the spectral measure µ is non-trivial, i.e., µ has infinite support.
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The prediction problem

The prediction problem

The ”finite” linear prediction problem is as follows.

Suppose we observe a finite realization of the process X (t):

{X (t), −n ≤ t ≤ −1}, n ∈ N := {1, 2, . . .}.

We want to make an one-step ahead prediction, that is, to predict the
unobserved random variable X (0), using the linear predictor

Y =
n∑

k=1

ckX (−k).

The coefficients ck (k = 1, 2, . . . , n) are chosen so as to minimize the
mean-squared error (MSE): E |X (0)− Y |2.
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The prediction problem

If ĉk := ĉk,n are the minimizing constants, then the random variable

X̂n(0) :=
n∑

k=1

ĉkX (−k)

is called the best linear one-step ahead predictor of X (0) based on the
observed finite past: X (−n), . . . ,X (−1).

The minimum MSE:

σ2
n(f ) := E

∣∣∣X (0)− X̂n(0)
∣∣∣2 ≥ 0

is called the prediction error of X (0) based on the past of length n.
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The prediction problem

Observe that
σ2
n+1(f ) ≤ σ2

n(f ), n ∈ N,

and hence the limit of σ2
n(f ) as n → ∞ exists. Denote by

σ2(f ) := σ2
∞(f )

the prediction error by the entire infinite past: {X (t), t ≤ −1}.
From the prediction point of view it is natural to distinguish:

The class of processes for which we have error-free prediction by the
entire infinite past, that is, σ2(f ) = 0. Such processes are called
deterministic or singular,

Processes for which σ2(f ) > 0 are called nondeterministic or regular.
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The prediction problem

Define the relative prediction error

δn(f ) := σ2
n(f )− σ2(f ),

and observe that

δn(f ) ≥ 0 and δn(f ) → 0 as n → ∞.

But what about the speed of convergence of δn(f ) to zero?

This speed depends on the regularity nature (regular or singular) of
the observed process X (t).

In this talk we discuss this question.
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The prediction problem

Specifically, the prediction problem we are interested in is
to describe the rate of decrease of δn(f ) to zero as n → ∞,
depending on the regularity nature of the observed process X (t).

It turns out that

for regular processes the asymptotic behavior of
δn(f ) = σ2

n(f )− σ2(f ) is determined by

the dependence structure of the observed process X (t) and
the differential properties of its spectral density f , while

for singular processes (δn(f ) = σ2
n(f )) it is determined by

the geometric properties of the spectrum of X (t) and
singularities of its spectral density f .

In this talk we focus on the
less investigated case - singular processes.
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The prediction problem

This talk is based on the following joint works with
Nikolay Babayan (Russian-Armenian University) and
Murad Taqqu (Boston University).

1. N. M. Babayan, M. S. Ginovyan. On asymptotic behavior of the
prediction error for a class of deterministic stationary sequences.
Acta Math. Hungar., 167 (2), 501–528 (2022)..

2. N. M. Babayan, M. S. Ginovyan. On the prediction error for singular
stationary processes and transfinite diameters of related sets.
Zapiski POMI, v. 510, 28–50 (2022).

3. N. M. Babayan, M. S. Ginovyan, M. S. Taqqu. Extensions of
Rosenblatt’s results on the asymptotic behavior of the prediction error
for deterministic stationary sequences.
J. Time Ser. Anal., 42: 622–652, 2021.

4. N. M. Babayan, M. S. Ginovyan. Asymptotic behavior of the prediction
error for stationary sequences. Probability Surveys. 20: 664–721, 2023.
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Kolmogorov-Szegő Theorem

Spectral characterization

of singular and regular processes
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Kolmogorov-Szegő Theorem

The next result describes the asymptotic behavior of σ2
n(µ) for a stationary

process X (t) with spectral measure µ and gives a spectral characterization
of deterministic and nondeterministic processes.
Let X (t) be a non-degenerate stationary process with spectral measure µ
of the form dµ(λ) = f (λ)dλ+ dµs(λ).

(a) (Kolmogorov-Szegő Theorem).

lim
n→∞

σ2
n(µ) = lim

n→∞
σ2
n(f ) = σ2(f ) = 2πG (f ), (3.1)

where G (f ) is the geometric mean of f , namely

G (f ) :=

{
exp

{
1
2π

∫ π
−π ln f (λ) dλ

}
if ln f ∈ L1(Λ)

0, otherwise,
(3.2)

It is remarkable that the limit in (3.1) is independent of µs .
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Kolmogorov-Szegő Theorem

(b) (Kolmogorov-Szegő alternative). Either∫ π

−π
ln f (λ) dλ = −∞ ⇔ σ2(f ) = 0 ⇔ X (t) is deterministic ,

or else∫ π

−π
ln f (λ) dλ > −∞ ⇔ σ2(f ) > 0 ⇔ X (t) is nondeterministic .

(c) X (t) is regular (PND) ⇔ it is nondeterministic and µs ≡ 0.

The condition ln f ∈ L1(Λ) is equivalent to the Szegő condition:∫ π

−π
ln f (λ) dλ > −∞ (3.3)

(this equivalence follows because ln f (λ) ≤ f (λ)).
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Formulas for the prediction error
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Formulas for the prediction error

We present formulas for the finite prediction error σ2
n(µ).

Using Kolmogorov’s isometric isomorphism V : X (t) ↔ e it , for
σ2
n(µ) we have

σ2
n(µ) := min

{ck}
IE

∣∣∣∣∣X(0)−
n∑

k=1

ckX(−k)

∣∣∣∣∣
2

= min
{qn∈Qn}

∥qn∥22,µ , (4.1)

where || · ||2,µ is the norm in L2(T, µ), and

Qn :=
{
qn : qn(z) = zn + c1z

n−1 + · · · cn
}

(4.2)

is the class of monic polynomials (i.e. with c0 = 1) of degree n.

Thus, the problem of finding σ2
n(µ) becomes to the problem of finding

the solution of the minimum problem (4.1)-(4.2).
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Formulas for the prediction error

The polynomial pn(z) := pn(z , µ) which solves the minimum problem
(4.1)-(4.2) is called the optimal polynomial for µ in the class Qn.

The next result by Szegő solves the minimum problem (4.1)-(4.2).

Proposition (3.1. Szegő)

The unique solution of the minimum problem (4.1)-(4.2) is given by
pn(z) = κ−1

n φn(z), and the minimum in (4.1) is equal to ∥pn∥22,µ = κ−2
n ,

where φn(z) = κnz
n + · · ·+ ln (κn > 0) is the nth orthogonal polynomial

on the unit circle associated with the measure µ.

Thus, for the prediction error σ2
n(µ) we have the following formula:

σ2
n(µ) = min

{qn∈Qn}
∥qn∥22,µ = ∥pn(µ)∥22,µ =

∥∥κ−1
n φn(µ)

∥∥2
2,µ

= κ−2
n .(4.3)
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Formulas for the prediction error

In the theory of OPUC and prediction theory an important role play
the following numbers, called the parameters or Verblunsky
coefficients:

vn := vn(µ) = −pn(0) = −κ−1
n φn(0) = lnκ

−1
n , |vn| < 1, n ∈ N.

(4.4)
There is a close relationship between the prediction error σ2

n(µ) and
the parameters vn, given by formulas:

σ2
n(µ) =

n∏
j=1

(1− |vj |2) and
σ2
n+1(µ)

σ2
n(µ)

= 1− |vn|2. (4.5)

From the second formula in (4.5), it follows that the convergence of
the sequences |vn| and σn+1(µ)/σn(µ) are equivalent.
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Formulas for the prediction error

For a general measure µ the asymptotic relation

lim
n→∞

vn(µ) = 0 (4.6)

is of special interest.

In this respect the following question arises naturally:

what is the ”minimal” sufficient condition on µ ensuring (4.6)?

The next result of Rakhmanov (1983) shows that for (4.6), or
equivalently, for

lim
n→∞

σn+1(µ)/σn(µ) = 1

it is enough only to have a.e. positiveness on T of the s.d. f .

Theorem (Rakhmanov)

Let the measure µ have the form: dµ(λ) = f (λ)dλ+ dµs(λ), with f > 0
a.e. on T. Then the asymptotic relation (4.6) is satisfied.
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Asymptotic behavior of the prediction error

for singular processes.

Background:

Rosenblatt’s and Davisson’s results.
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Asymptotic for singular processes

Only few works are devoted to the study of the speed of convergence
of δn(f ) = σ2

n(f ) to zero as n → ∞, that is, the asymptotic behavior
of the prediction error for deterministic processes.

Using the technique of OPUC, M. Rosenblatt (1957) investigated the
asymptotic behavior of the prediction error σ2

n(f ) for deterministic
processes in the following two cases:

(a) the spectral density f (λ) is continuous and positive on a segment of
[−π, π] and zero elsewhere.

(b) the spectral density f (λ) has a very high order of contact with zero at
points λ = 0,±π, and is strictly positive otherwise.

We will say that the spectral density f (λ) has a very high order of
contact with zero at a point λ0 if f (λ) is positive everywhere except
for the point λ0, due to which the Szegő condition (3.3) is violated.
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Asymptotic for singular processes

Rosenblatt’s first theorem about speed of convergence of σ2
n(f ).

For the case (a) above, M. Rosenblatt proved that the prediction
error σ2

n(f ) decreases to zero exponentially as n → ∞. More precisely,
M. Rosenblatt proved the following theorem.

Theorem (Rosenblatt’s first theorem (Theorem 1))

Let the s.d. f of a stationary process X (t) be positive and continuous on
the segment [π/2− α, π/2 + α], 0 < α < π, and zero elsewhere. Then
σ2
n(f ) approaches zero exponentially as n → ∞. More precisely,

lim
n→∞

n
√

σn(f ) = sin(α/2). (5.1)
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Davisson’s theorem

Davisson’s theorem.

Using constructive methods, Davisson (1965) obtained an upper
bound (rather than an asymptote) for the prediction error σ2

n(f )
without imposing continuity requirement on the s.d. f (λ).
Specifically, in Davisson (1965) was proved the following result:

Theorem (Davisson (Theorem 2))

Let the s.d. f (λ), λ ∈ [−π, π] of the process X (t) be identically zero on a
closed interval of length 2π − 2α, 0 < α < π. Then for the prediction
error σ2

n(f ) the following inequality holds:

σ2
n(f ) ≤ 4c (sin(α/2))2n−2 ,

where c = r(0) and r(·) is the covariance function of X (t).
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Asymptotic for singular processes

Rosenblatt’s second theorem about speed of convergence of σ2
n(f ).

Concerning the case (b), for a specific singular process X (t)
Rosenblatt proved that σ2

n(f ) decreases to zero like a power.

More precisely, the deterministic process X (t) considered in
Rosenblatt (1957) has the spectral density

fa(λ) :=
e(2λ−π)φ(λ)

cosh (πφ(λ))
, fa(−λ) = fa(λ), 0 ≤ λ ≤ π, (5.2)

where φ(λ) = (a/2) cotλ and a is a positive parameter.

For this case, Rosenblatt proved the following theorem.

Theorem (Rosenblatt’s second theorem (Theorem 3))

Suppose that the process X (t) has s.d. fa given by (5.2). Then

σ2
n(fa) ∼

Γ2 ((a+ 1)/2)

π22−a
n−a as n → ∞. (5.3)
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Asymptotic for singular processes

Note that the function in (5.2) was first considered by Pollaczek
(1929), and then by Szegő (1935), as a weight-function of a class of
orthogonal polynomials possessing certain ’irregular’ properties.

It is worth to note that in Rosenblatt (1957) it was observed the
singularity of function fa(λ) only at point λ = 0, while a detailed
analysis showed that for fa we have the asymptotic relation:

fa(λ) ∼
{

2ea exp {−aπ/|λ|} as λ → 0,
2 exp {−aπ/(π − |λ|)} as λ → ±π.

(5.4)

Thus, fa has very high order of contact with zero at λ = 0,±π, due
to which the process with s.d. fa is singular and σ2

n(fa) decreases to
zero like n−a.
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Asymptotic for singular processes

Remark. Under the conditions of Rosenblatt’s first theorem
(Theorem 5.1), we have

lim
n→∞

σ2
n+1(f )/σ

2
n(f ) = sin2(α/2) and lim

n→∞
|vn(f )| = cos(α/2).

Similarly, under the conditions of Rosenblatt’s second theorem
(Theorem 5.3), we have

lim
n→∞

σn+1(fa)/σn(fa) = 1 and lim
n→∞

vn(fa) = 0,

where vn(f ) and vn(fa) are the Verblunsky coefficients corresponding
to functions f and fa, respectively.

In the rest of this talk we present extensions of the above stated
Rosenblatt’s theorems (Theorems 1 and 3) and Davisson’s theorem
(Theorem 2) to broader classes of spectral densities.
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Extensions

of Rosenblatt’s and Davisson’s results.
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Extensions of Rosenblatt’s first theorem

Extensions of Rosenblatt’s first theorem.

In what follows, by Ef we denote the spectrum of the process X (t):

Ef := {e iλ : f (λ) > 0}. (5.5)

Thus, the closure E f of Ef is the support of the s.d. f .

For a compact set F in the complex plane C by τ(F ) we denote the
transfinite diameter of F .

Transfinite diameter. Let F be a compact set in the complex plane
C. Given any natural number n ≥ 2, choose n points z1, . . . , zn ∈ F
so as to maximize the product of the distances between them. Then
the geometric mean of these distances, denoted by τn(F ), is called
the nth transfinite diameter of F . Fekete (1930) proved that the
sequence τn(F ) has a finite limit as n → ∞. This limit, denoted by
τ(F ), is called the transfinite diameter of F .
If F is empty or consists of a finite number of points, then τ(F ) = 0.
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Extensions of Rosenblatt’s first theorem

The next result extends Rosenblatt’s first theorem (Theorem 1) to the
case of several arcs, without having to stipulate continuity of s.d. f .

Theorem (Theorem 4)

Let the support E f of the spectral density f of the process X (t) consist of
a finite number of closed arcs of the unit circle T, and let f > 0 a.e. on
E f . Then the sequence n

√
σn(f ) converges, and

lim
n→∞

n
√

σn(f ) = τf , (5.6)

where τf := τ(E f ) is the transfinite diameter of E f .
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Extensions of Rosenblatt’s first theorem

Remark. In Theorem 1, E f = {e iλ : λ ∈ [π/2− α, π/2 + α]}, which
represents a closed arc of length 2α, and we have τ(E f ) = sin(α/2).
Thus, the asymptotic relation (5.1) is a special case of (5.6).

Remark. It follows from (5.6) that the question of exponential decay
of σn(f ) is determined solely by the transfinite diameter of the support
E f of the s.d. f , and does not depend on the values of f on E f .

The following result provides a sufficient condition for the exponential
decay of σn(f ).

Theorem (Theorem 5)

If the spectral density f of the process X (t) vanishes on an arc, then the
prediction error σn(f ) decreases to zero exponentially. More precisely, if f
vanishes on an arc Γδ ⊂ T of length 2δ (0 < δ < π), then

lim sup
n→∞

n
√

σn(f ) ⩽ cos(δ/2) < 1. (5.7)
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Extensions of Rosenblatt’s first theorem

The next result gives a necessary condition for the exponential decay
of σn(f ).

Theorem (Theorem 6)

A necessary condition for σn(f ) to tend to zero exponentially is that the
s.d. f should vanish on a set of positive Lebesgue measure.

Remark. This theorem shows that if the s.d. f a.e. positive, then it
is impossible to obtain exponential decay of the prediction error
σn(f ), no matter how high the orders of the zeros of f .
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Extensions of Rosenblatt’s first theorem

From Theorem 4, we obtain the following result.

Theorem (Theorem 7)

Let the support E f and the s.d. f satisfy the conditions of Theorem 4. If
the sequence of Verblunsky coefficients vn(f ) converges in modulus, then

lim
n→∞

|vn(f )| =
√
1− τ2f . (5.8)

Remark. observe that the convergence of |vn(f )| (or equivalently
σn+1(f )/σn(f )) implies the convergence of n

√
σn(f ), but not the

converse. Hence, the condition of convergence (in modulus) of
Verblunsky sequence vn(f ) in Theorem 7 is essential.
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Extensions of Rosenblatt’s first theorem

From Theorem 4 we obtain the following result, which is a partial
converse of Rakhmanov’s theorem:

Theorem (Theorem 8)

If the sequence σn(f ) satisfies the following condition:

lim sup
n→∞

n
√
σn(f ) = 1 (5.9)

(in particular, if limn→∞ vn(f ) = 0), then E f = T, i.e. the spectrum of the
process is dense in T.
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Examples. A consequence of Theorem 4

Examples.

The calculation of the transfinite diameter is a challenging problem,
and in only very few cases has the transfinite diameter been exactly
calculated.

Below we give some examples, where we can explicitly calculate the
the transfinite diameter by using some properties of the transfinite
diameter.

In examples below we will use the following notation:
given 0 < β < 2π and z0 = e iθ0 , θ0 ∈ [−π, π), we denote by Γβ(θ0)
an arc of the unit circle of length β which is symmetric with respect
to the point z0 = e iθ0 :

Γβ(θ0) := {e iθ : θ ∈ [θ0 − β/2, θ0 + β/2]}. (5.10)
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Examples. A consequence of Theorem 4

Proposition

The transfinite diameter possesses the following properties.

(a) For a compact set F ⊂ C the transfinite diameter τ(F ) is invariant
with respect to parallel translation and rotation of F .

(b) The transfinite diameter of an arc Γα of a circle of radius R with
central angle α is equal to R sin(α/4).

(c) The transfinite diameter of an arbitrary line segment F is equal to
one-fourth its length, that is, if F := [a, b], then
τ(F ) = τ([a, b]) = (b − a)/4.

(d) Let F ⊂ C be a compact set lying on the unit circle T and symmetric
with respect to real axis, and let F x be the projection of F onto the
real axis. Then τ(F ) = [2τ(F x)]1/2.
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Examples. A consequence of Theorem 4

Example 1. Let Γ2α := Γ2α(0). Then the projection Γx2α of Γ2α onto
the real axis is the segment [cosα, 1] (see Figure 1a)), and by
Proposition (C) for the transfinite diameter τ(Γx2α) we have

τ(Γx2α) = (1− cosα)/4 = (1/2) sin2(α/2).

Hence, according to Proposition (D), we obtain

τ(Γ2α) = [2τ(Γx2α)]
1/2 = sin(α/2). (5.11)

Taking into account that the transfinite diameter is invariant with
respect to rotation (see Proposition (A)), from (5.11) for any
θ0 ∈ [−π, π) we have τ(Γ2α(θ0)) = sin(α/2).

Mamikon S. Ginovyan (BU) On the prediction error June 27, 2023 34 / 54



Examples. A consequence of Theorem 4

Remark. Notice that the expression sin(α/2) in (5.11) was first
obtained by Szegő (1935), where he calculated it as the Chebyshev
constant of the arc Γ2α(π/2), then it was deduced by Rosenblatt
(1957), as the capacity of Γ2α(π/2).

Figure: a) The sets Γ2α and Γx2α. b) The set Γα,δ.
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Examples. A consequence of Theorem 4

Example 2. Let α > 0, δ ≥ 0 and α+ δ ≤ π. Define (Figure 1b)):

Γα,δ := Γα,δ(0) = {e iθ : θ ∈ [−(δ + α),−δ] ∪ [δ, δ + α]}. (5.12)

Then the projection Γxα,δ of Γα,δ onto the real axis is the segment
Γxα,δ = [cos(α+ δ), cos δ], and by Proposition (C) we have

τ(Γxα,δ) =
cos δ − cos(α+ δ)

4
=

sin(α/2) sin(α/2 + δ)

2
.

Hence, according to Proposition (D), we obtain

τ(Γα,δ) = [2τ(Γxα,δ)]
1/2 = (sin(α/2) sin(α/2 + δ))1/2 . (5.13)

By Proposition (A), from (5.13) for any θ0 ∈ [−π, π) we have

τ(Γα,δ(θ0)) = (sin(α/2) sin(α/2 + δ))1/2 . (5.14)

Observe that for δ = 0 we have Γα,δ(θ0) = Γ2α(θ0), and formula
(5.14) becomes (5.11).
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Examples. A consequence of Theorem 4

Now we apply Theorem 4 to obtain the asymptotic behavior of σn(f )
in the cases where the spectrum of X (t) is as in Examples 1 and 2.

Theorem (Theorem 9)

Let E f be the support of the s.d. f of a stationary process X (t), and let
f > 0 a.e. on E f . Then for σn(f ) the following assertions hold.

(a) If E f = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

lim
n→∞

n
√
σn(f ) = sin(α/2).

(b) If E f = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 2, then

lim
n→∞

n
√

σn(f ) = (sin(α/2) sin(α/2 + δ))1/2 .
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An extension of Davisson’s theorem

An extension of Davisson’s theorem

Recall Davisson’s theorem: If the s.d. f is identically zero on a closed
interval of length 2π − 2α, 0 < α < π, then

σ2
n(f ) ≤ 4c (sin(α/2))2n−2 , (5.15)

where c = r(0) and r(·) is the covariance function of X (t).

The theorem that follows extends Davisson’s theorem to the case
where the spectrum of X (t) consists of a union of two equal arcs.

Let α > 0, δ ≥ 0 and α+ δ ≤ π, and let

Γα,δ := Γα,δ(0) = {e iθ : θ ∈ [−(δ + α),−δ] ∪ [δ, δ + α]},

which is the union of two arcs of the unit circle of lengths α, the
distance between which (over the circle) is equal to 2δ
(see Example 2 and Figure 1b)).
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An extension of Davisson’s theorem

Theorem (Theorem 10)

Let the s.d. f (λ), λ ∈ [−π, π] of the process X (t) be nonnegative on the
set Γα,δ (α > 0, δ ≥ 0, α+ δ ≤ π) and vanishes outside Γα,δ. Then

σ2
n(f ) ≤ 4c (sin(α/2))n−1 (sin(α/2 + δ))n−1 , (5.16)

where c = r(0) and r(·) is the covariance function of X (t).

Remark. For δ = 0 the set Γα,δ defined by (5.12) is an arc of length
2α, and, in this case, the inequality (5.16) becomes Davisson’s
inequality (5.15).
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Extensions of Rosenblatt’s second theorem

Extensions of Rosenblatt’s second theorem

Here we analyze the asymptotic behavior of σ2
n(f ) in the case where

the s.d. f has a very high order contact with zero at one or several
points, so that the Szegő condition (3.3) is violated.

The approach is based on the asymptotic behavior of the ratio:

σ2
n(fg)

σ2
n(f )

as n → ∞,

where g is a non-negative function.
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Extensions of Rosenblatt’s second theorem

To clarify the approach, we first assume that f is the s.d. of a
nondeterministic process, in which case the geometric mean G (f ) is
positive. We can then write

lim
n→∞

σ2
n(fg)

σ2
n(f )

=
σ2
∞(fg)

σ2
∞(f )

=
2πG (fg)

2πG (f )
=

G (f )G (g)

G (f )
= G (g). (5.17)

It turns out that under some additional assumptions imposed on
functions f and g , the asymptotic relation (5.17) remains also valid in
the case of deterministic processes, that is, when G (f ) = 0.
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Extensions of Rosenblatt’s second theorem

Preliminaries.

In what follows we consider the class of singular processes with s.d. f
for which the sequence of {σn(f )} is weakly varying, that is,

lim
n→∞

σn+1(f )/σn(f ) = 1.

Denote by F the class of the corresponding spectral densities:

F :=

{
f ∈ L1(Λ) : f ≥ 0, G (f ) = 0, lim

n→∞

σn+1(f )

σn(f )
= 1

}
. (5.18)

Remark. According to Rakhmanov’s theorem, a sufficient condition
for f ∈ F is that f > 0 almost everywhere on Λ and G (f ) = 0.
On the other hand, the class F does not contain spectral densities,
which vanish on an entire segment of Λ (or on an arc of T).
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Extensions of Rosenblatt’s second theorem

Def. Let F be the class of spectral densities defined by (5.18). For
f ∈ F denote by Mf the class of nonnegative functions g(λ) (λ ∈ Λ)
satisfying the conditions: G (g) > 0, fg ∈ L1(Λ), and

lim
n→∞

σ2
n(fg)

σ2
n(f )

= G (g), (5.19)

that is,

Mf :=

{
g ≥ 0, G (g) > 0, fg ∈ L1(Λ), lim

n→∞

σ2
n(fg)

σ2
n(f )

= G (g)

}
.

Def. We define the class B to be the set of all nonnegative, Riemann
integrable on Λ = [−π, π] functions h(λ). Also, define the subclasses:

B+ = {h ∈ B : h(λ) ⩾ m}, B− = {h ∈ B : h(λ) ⩽ M}, B−
+ = B+∩B−,

where m and M are some positive constants.
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Extensions of Rosenblatt’s second theorem

The next theorem describes the asymptotic behavior of the ratio
σ2
n(fg)/σ

2
n(f ) as n → ∞, and states that if the s.d. f ∈ F , and g is a

nonnegative function, which can have polynomial type singularities,
then {σn(fg)} and {σn(f )} have the same asymptotic behavior.

Theorem (Theorem 11)

Let f ∈ F , and let g be a function of the form:

g(λ) = h(λ) · t1(λ)
t2(λ)

, λ ∈ Λ, (5.20)

where h ∈ B−
+ , t1 and t2 are nonnegative trigonometric polynomials, such

that fg ∈ L1(Λ). Then g ∈ Mf and fg ∈ F , that is, fg is the s.d. of a
singular process with weakly varying prediction error, and (5.19) holds.
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Extensions of Rosenblatt’s second theorem

The next theorem extends Theorem 11 to a broader class of spectral
densities, for which the function g can have arbitrary power type
singularities.

Theorem (Theorem 12)

Let f ∈ F , and let g be a function of the form:

g(λ) = h(λ) · |t(λ)|α, α > 0, λ ∈ Λ, (5.21)

where h ∈ B−
+ and t is an arbitrary trigonometric polynomial. Then

g ∈ Mf and fg ∈ F , that is, fg is the s.d. of a deterministic process with
weakly varying prediction error, and the relation (5.19) holds.
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Extensions of Rosenblatt’s second theorem

Taking into account that the sequence {n−α, n ∈ N, α > 0} is
weakly varying, as an immediate consequence of Theorems 11 and 12,
we have the following result.

Corollary

Let the functions f and g satisfy the conditions of one of Theorems 11
and 12, and let σn(f ) ∼ cn−α (c > 0, α > 0) as n → ∞. Then

σn(fg) ∼ cG (g)n−α as n → ∞,

where G (g) is the geometric mean of g .

The next result, which immediately follows from Theorem 3 and
Corollary, extends Rosenblatt’s second theorem.
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Extensions of Rosenblatt’s second theorem

Theorem (Theorem 13)

Let f = fag , where fa is defined by (5.2), and let g be a function satisfying
the conditions of one of Theorems 11 and 12. Then

δn(f ) = σ2
n(f ) ∼

Γ2
(
a+1
2

)
G (g)

π22−a
n−a as n → ∞,

where G (g) is the geometric mean of g .

We thus have the same limiting behavior for σ2
n(f ) as in the

Rosenblatt’s relation (5.3) up to an additional positive factor G (g).

In view of Rakhmanov’s theorem, Theorems 11-13 remain true if the
condition f ∈ F is replaced by the slightly strong but more
constructive condition: ’f > 0 a.e. on Λ and G (f ) = 0’.
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Examples

Examples.

Example 1. Let g(λ) = sin−2k(λ− λ0), where k ∈ N and λ0 is an
arbitrary point from [−π, π]. Then, for the geometric mean G (g) we
have G (g) = 4k , and in view of (5.19), we get

lim
n→∞

σ2
n(fg)

σ2
n(f )

= G (g) = 4k .

Thus, dividing the spectral density f by the non-negative
trigonometric polynomial sin2k(λ− λ0) of degree 2k (k ∈ N), yields a
4k -fold asymptotic increase of the prediction error.

Notice that the value of the geometric mean G (g) does not depend
on the choice of the point λ0 ∈ [−π, π].
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Examples

Example 2. Let g(λ) = | sin(λ− λ0)|α, α ∈ R. We have

lim
n→∞

σ2
n(fg)

σ2
n(f )

= G (g) =
1

2α
.

Thus, multiplying the spectral density f (λ) by the function
g(λ) = | sin(λ− λ0)|α yields a 2α-fold asymptotic reduction of the
prediction error.

Example 3. Let g(λ) = |λ− λ0|α, λ0 ∈ [−π, π], α ∈ R. We have

lim
n→∞

σ2
n(fg)

σ2
n(f )

= G (g) =
(π
e

)α
≈ (1.156)α.

Thus, multiplying the spectral density f (λ) by the function
g(λ) = |λ− λ0|α multiplies the prediction error asymptotically by
(π/e)α ≈ (1.156)α.
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An Application. Estimates for the minimal

eigenvalue of truncated Toeplitz matrices
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Estimates for the minimal eigenvalue

Here we analyze the relationship between the the minimal eigenvalue
of a truncated Toeplitz matrix and the finite prediction error for a
stationary process, by showing how it is possible to obtain information
about the minimal eigenvalue from that of the prediction error.

Let f (λ) be the s.d. and let

Tn(f ) := ||rk−j ||j ,k=0,1,...,n

be the truncated Toeplitz matrix generated by the Fourier coefficients
(covariances) of f , and let

λ1,n(f ) ≤ λ2,n(f ) ≤ · · ·λn+1,n(f )

be the eigenvalues of Tn(f ).

The next proposition gives a relationship between λ1,n(f ) and σ2
n(f ).
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Estimates for the minimal eigenvalue

Proposition

Let λ1,n(f ) and σ2
n(f ) be as above. Then λ1,n(f ) ≤ σ2

n(f ) for any n ∈ N.

Applying Theorem 9 and Proposition we obtain asymptotic estimates
for λ1,n(f ).

Theorem

Let f , E f and λ1,n(f ) be as above. Then

(a) If E f = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

λ1,n(f ) = O
(
sin2n (α/2)

)
as n → ∞. (6.1)

(b) If E f = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 2, then

λ1,n(f ) = O
(
(sin(α/2) sin(α/2 + δ))n

)
as n → ∞. (6.2)
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Estimates for the minimal eigenvalue

Using Davisson’s theorem (Theorem 2), its extension (Theorem 10)
and Proposition we obtain exact upper bounds for λ1,n(f ) rather than
the asymptotic estimates (6.1) and (6.2).

Theorem

Let f , E f and λ1,n(f ) be as above. Then

(a) If E f = Γ2α(θ0), where Γ2α(θ0) is as in Example 1, then

λ1,n(f ) ≤ 4c (sin(α/2))2n−2
. (6.3)

(b) If E f = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 2, then

λ1,n(f ) ≤ 4c (sin(α/2))n−1 (sin(α/2 + δ))n−1
, (6.4)

where the constant c is as in Davisson’s theorem: c = r(0) =
∫ π

−π
f (λ)dλ.
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Thank you
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